Daily Question

Day 2 Pure Mathematics - Mark Scheme

Question 1

5 (a) PQ: $m_1 = \frac{10-2}{9-(-3)} (=\frac{2}{3})$ and QR: $m_2 = \frac{10-4}{9-a}$ M1 (b) $m_1 m_2 = -1$: $\frac{8}{12} \times \frac{6}{9-a} = -1$ a = 13M1 A1 (3) (a) Alternative method (Pythagoras) Finds all three of the following Alt for (a) $(9-(-3))^2+(10-2)^2$, (i.e.208), $(9-a)^2+(10-4)^2$, $(a-(-3))^2+(4-2)^2$ Using Pythagoras (correct way around) e.g. $a^2 + 6a + 9 = 240 + a^2 - 18a + 81$ to form equation Α1 Solve (or verify) for a, a = 13 (*) (3) (b) Centre is at (5, 3) **B**1 $(r^2 =) (10-3)^2 + (9-5)^2$ or equiv., or $(d^2 =) (13-(-3))^2 + (4-2)^2$ $(x-5)^2 + (y-3)^2 = 65$ or $x^2 + y^2 - 10x - 6y - 31 = 0$ M1 A1 M1 A1 (5) Alt for Uses $(x-a)^2 + (y-b)^2 = r^2$ or $x^2 + y^2 + 2gx + 2fy + c = 0$ and substitutes M1 (b) (-3, 2), (9, 10) and (13, 4) then eliminates one unknown Eliminates second unknown M1 Obtains g = -5, f = -3, c = -31 or a = 5, b = 3, $r^2 = 65$ A1, A1, B1cao (5) [8]

Question 2

•			
(a)	N(2, -1)	B1, B1	(2)
(b)	$N(2, -1)$ $r = \sqrt{\frac{169}{4}} = \frac{13}{2} = 6.5$	B1	(1)
(c)	Complete Method to find x coordinates, $x_2 - x_1 = 12$ and $\frac{x_1 + x_2}{2} = 2$ then solve To obtain $x_1 = -4$, $x_2 = 8$ Complete Method to find y coordinates, using equation of circle or Pythagoras i.e. let d be the distance below N of A then $d^2 = 6.5^2 - 6^2 \implies d = 2.5 \implies y =$ So $y_2 = y_1 = -3.5$	M1 A1ft A M1 A1	1ft (5)
(d)	Let $\hat{ANB} = 2\theta \implies \sin \theta = \frac{6}{"6.5"} \implies \theta = (67.38)$ So angle ANB is 134.8 *	M1 A1	(2)
(e)	AP is perpendicular to AN so using triangle ANP $\tan \theta = \frac{AP}{"6.5"}$	M1	
	Therefore $AP = 15.6$	A1cao	(2)

[12]